
Chapter 1

[13]

Some developers strongly feel that these new technologies are coming
along much faster than they can be absorbed. There have been many
heated debates on the extra aggressiveness with which Microsoft is
releasing new products. In many of the offline discussions we have had
upto now, most people feel that developers are not getting enough time
to absorb existing technologies and "keep pace with MS". People are still
struggling with master pages and partial classes, and we have AJAX,
SilverLight, WPF, etc.!
Many developers feel that there is simply too much to grasp in too little
time, considering the fact that many clients are still using VS2003 and are
refusing to upgrade due to reasons such as lack of funds, apprehension of
going with new and untested technologies such as WPF and Silverlight,
lack of experienced programmers, and so on. Some customers are
also confused and are not sure how these new technologies can benefit
their business!
We should understand that none of the new technologies were created to
be "silver bullets". They have been added to give developers options to
chose from, to reduce development time, and to be more effective. These
technologies should be used in the right architectural context instead of
blindly following them, which can lead to a greater risk through poor
implementation. All changes are good, but we need to understand why
the change is needed and how it will help us in balancing the advantages
and disadvantages.

We have thousands of books, online articles and tutorials on how to use AJAX,
LINQ, WWF, and WPF in ASP.NET, but there are still very few online articles
and limited books that focus on what architecture to use, and in which ASP.NET
application. Because each project is unique in its own way, we can never use a
copy-paste solution. The important thing to bar in mind when learning application
architecture and design is that there are no strict rules, only guidelines. And these
guidelines were developed based on the experience gained over years of work by
developers on different projects.

Upcoming latest technologies should not be mistaken as the means to develop better
applications. Lets go back to the pre-ASP.NET years for a moment. In those days,
classic ASP was very famous. There were many big, famous, and stable applications
in classic ASP 3.0. It was difficult to create an object-oriented application with classic
ASP (compared to the intuitive way, in which we can do it so easily now in ASP.
NET), but good programmers used classes in ASP as well, adopting elements of
object-oriented re-usable design. A better platform, such as ASP.NET, did help in
building websites that could support a better architecture, but the power to use it in
an efficient way still lies in the hands of an experienced programmer.

Introduction to Architecture and Design

[14]

Just as ASP.NET was a major stepping stone in web development, AJAX enhanced
the UI experience along the same lines, providing a user-friendly experience while
browsing websites, and LINQ was introduced to revolutionize data access. But still
there are numerous robust and popular websites in ASP.NET not using any of the
new technologies. This means that the key to building a good website can never
only be learning and absorbing the latest technology out there, but also how
you put it to use—how you make these technologies work for your project in a
comprehensive way.

If one knows how to write clean and maintainable code and use efficient
programming techniques to create a good stable architectural platform and
application structure, then technology will supplement the design. Without a stable
architecture and good coding practices, a programmer might use the technologies
in a haphazard manner, creating messy code and junk websites. But once we
understand basics of the application architecture and the different design patterns,
then these technology tools become our assets.

Technology and Art
Unlike coding, which demands strong logical skills, application architecture and
design is more of an art, and it takes time and experience to become a good architect.
For example, it takes a very good and experienced designer to create a unique and
attractive design for a car. Once it's done, the assembly line can create millions of
units of that model using the appropriate machines and tools for the job. Similarly,
it is relatively easier to understand and code in ASP.NET, but it can take some time
for even an intermediate developer to be able to understand and design the pros and
cons of the different architectural options that might suit a given web application.
And unlike coding, there are no strict rules in architecture. A design which might not
work for some projects can work perfectly well for others. That's why it might take
years of experience to develop an eye for good architecture and design. This, coupled
with the fact that each application is unique in its own sense and warrants its own
design and architecture, can be confusing for developers when deciding what is best
for their project.

Therefore, architecture is one thing which requires patient understanding, as well as
creativity in order to be able to adapt and innovate according to a project's needs.

